Форум WZ.do.AM

Главная | теория вероятности - Форум | Регистрация | Вход
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
теория вероятности
wzДата: Воскресенье, 13.09.2009, 09:48 | Сообщение # 1
~<•] Клан Лидер [•>~
Группа: Администраторы
Сообщений: 336
Награды: 0
Репутация: 666
Статус: Offline
Киевский политехнический институт
Кафедра КСОИУ

Конспект лекций

по курсу:

”Теория вероятности и математическая статистика”


Преподаватель: Студент II курса
ФИВТ, гр. ИС-41
проф. Павлов А. А. Андреев А. С.

Киев - 1996 г.
Введение.
Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Теория вероятности изучает данные закономерности.
Например: определить однозначно результат выпадения “орла” или “решки” в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число “орлов” и “решек”.
Испытанием называется реализация определенного комплекса условий, который может воспроизводиться неограниченное число раз. При этом комплекс условий включает в себя случайные факторы, реализация которого в каждом испытании приводит к неоднозначности исхода испытания.
Например: испытание - подбрасывание монеты.
Результатом испытания является событие. Событие бывает:
Достоверное (всегда происходит в результате испытания);
Невозможное (никогда не происходит);
Случайное (может произойти или не произойти в результате испытания).
Например: При подбрасывании кубика невозможное событие - кубик станет на ребро, случайное событие - выпадение какой либо грани.
Конкретный результат испытания называется элементарным событием.
В результате испытания происходят только элементарные события.
Совокупность всех возможных, различных, конкретных исходов испытаний называется пространством элементарных событий.
Например: Испытание - подбрасывание шестигранного кубика. Элементарное событие - выпадение грани с “1” или “2”.
Совокупность элементарных событий это пространство элементарных событий.
Сложным событием называется произвольное подмножество пространства элементарных событий.
Сложное событие в результате испытания наступает тогда и только тогда, когда в результате испытаний произошло элементарное событие, принадлежащее сложному.
Таким образом, если в результате испытания может произойти только одно элементарное событие, то в результате испытания происходят все сложные события, в состав которых входят эти элементарные.
Например: испытание - подбрасывание кубика. Элементарное событие - выпадение грани с номером “1”. Сложное событие - выпадение нечетной грани.
Введем следующие обозначения:
А - событие;
 - элементы пространства ;
 - пространство элементарных событий;
U - пространство элементарных событий как достоверное событие;
V - невозможное событие.
Иногда для удобства элементарные события будем обозначать E¬i, Qi.

Операции над событиями.
1. Событие C называется суммой A+B, если оно состоит из всех элементарных событий, входящих как в A, так и в B. При этом если элементарное событие входит и в A, и в B, то в C оно входит один раз. В результате испытания событие C происходит тогда, когда произошло событие, которое входит или в A или в B. Сумма произвольного количества событий состоит из всех элементарных событий, которые входят в одно из Ai, i=1, ..., m.

2. Событие C произведением A и B, если оно состоит из всех элементарных событий, входящих и в A, и в B. Произведением произвольного числа событий называется событие состоящее из элементарных событий, входящих во все Ai, i=1, ..., m.

3. Разностью событий A-B называется событие C, состоящее из всех элементарных событий, входящих в A, но не входящих в B.

4. Событие называется противоположным событию A, если оно удовлетворяет двум свойствам.
Формулы де Моргана: и

5. События A и B называются несовместными, если они никогда не могут произойти в результате одного испытания.
События A и B называются несовместными, если они не имеют общих элементарных событий.
C=AB=V
Тут V - пустое множество.
Частость наступления события.
Пусть пространство элементарных событий конечно и состоит из m элементарных событий. В этом случае в качестве возможных исходов испытаний рассматривают 2¬¬m событий - множество всех подмножеств пространства элементарных событий  и невозможное событие V.
Пример:
=(1, 2, 3)
A1=V
A2=(1)
A3=(2)
A4=(3)
A5=(1, 2)
A6=(2, 3)
A7=(1, 3)
A8=(1, 2, 3)
Обозначим систему этих событий через F. Берем произвольное событие AF. Проводим серию испытаний в количестве n. n - это количество испытаний, в каждом из которых произошло событие A.
Частостью наступления события A в n испытаниях называется число

Свойства частости.
1.
2. Частость достоверного события равна 1. n(U)=1.
3. Частость суммы попарно несовместных событий равна сумме частостей.
Рассмотрим систему Ai, i=1, ..., k; события попарно несовместны, т.е.
Событие
Пусть в результате некоторого испытания произошло событие A. По определению сумы это означает, что в этом испытании произошло некоторое событие Ai. Так как все события попарно несовместны, то это означает, что никакое другое событие Aj (ij) в этом испытании произойти не может. Следовательно:
nA=nA1+nA2+...+nAk

Теория вероятности используется при описании только таких испытаний, для которых выполняется следующее предположение: Для любого события A частость наступления этого события в любой бесконечной серии испытаний имеет один и тот же предел, который называется вероятностью наступления события A.
Следовательно, если рассматривается вероятность наступления произвольного события, то мы понимаем это число следующим образом: это частость наступления события в бесконечной (достаточно длинной) серии испытаний.
К сожалению, попытка определить вероятность как предел частости, при числе испытаний, стремящихся к бесконечности, закончилась неудачно. Хотя американский ученый Мизес создал теорию вероятности, базирующуюся на этом определении, но ее не признали из-за большого количества внутренних логических несоответствий.
Теория вероятности как наука была построена на аксиоматике Колмогорова.
Аксиоматика теории вероятности.
Построение вероятностного пространства.
Последовательно строим вероятностное пространство.
Этап 1:
Имеется испытание. В результате проведения испытания может наблюдаться одно событие из серии событий . Все события из системы  называются наблюдаемыми. Введем предположение, что если события A  , B   наблюдаемы, то наблюдаемы и события .
Система событий F называется полем событий или алгеброй событий, если для двух произвольных событий A, B  F выполняется:
1) Дополнения
2) (A+B)  F, (AB)  F
3) все конечные суммы элементов из алгебры принадлежат алгебре
4) все конечные произведения элементов из алгебры принадлежат алгебре
5) все дополнения конечных сумм и произведений принадлежат алгебре.
Таким образом, систему  мы расширяем до алгебры или поля F путем включения всех конечных сумм, произведений, и их дополнений. Т.е. считаем, что в результате проведения испытания наблюдаемая система является полем или алгеброй.
Множество всех подмножеств конечного числа событий является наблюдаемой системой - алгеброй, полем.
Этап 2:
Каждому событию A  F ставим в соответствие число P(A), которое называется вероятностью наступления события A. Такая операция задает вероятностную меру.
Вероятностная мера - числовая скалярная функция, аргументами которой являются элементы из системы алгебры F. Введенная вероятностная мера удовлетворяет системе из трех аксиом.
1.
2. P(U)=1.
3. Рассмотрим конечную или бесконечную систему попарно несовместных событий, каждое из которых принадлежит алгебре F.
. Если , то .
Алгебра событий называется  - алгеброй, если эта система событий содержит в себе все конечные суммы и произведения из алгебры F и их дополнения, а также все бесконечные суммы и произведения из алгебры и их дополнения.
Пример: В пространстве R1 зададим в качестве поля событий все конечные интервалы вида axb, ba.
Распространение этой алгебры на  - алгебру приводит к понятию борелевской алгебры, элементы которой называются борелевскими множествами. Борелевская алгебра получается не только расширением поля вида axb, но и расширением полей вида axb, axb.
Над наблюдаемым полем событий F задается счетно-аддитивная мера - числовая скалярная функция, элементами которой являются элементы поля F, т.е. события. Она удовлетворяет следующим трем условиям-аксиомам теории вероятности.
1. . P(A) - число, принадлежащее сегменту [0, 1] и называющееся вероятностью наступления события A.
2. P(A)  [0, 1] P(U)=1.
3. Пусть имеется A1, A2, A3,..., Ak - система попарно несовместных событий
Если , то .
Теорема о продолжении меры.
Построим минимальную  - алгебру, которой принадлежит поле событий F (например, борелевская  - алгебра - это минимальная  - алгебра, которая содержит поле всех полуинтервалов ненулевой длины).
Тогда доказывается, что счетно-аддитивная функция P(A) однозначно распространяется на все элементы минимальной  - алгебры и при этом ни одна из аксиом не нарушается.
Таким образом, продленное P(A) называется  - аддитивной мерой.
 - алгебра содержит ненаблюдаемые события наряду с наблюдаемыми.
Но в аксиоматической теории вероятности считается, что может произойти любое событие из  - алгебры.
Расширение поля наблюдаемых событий на  - алгебру связано с невозможностью получить основные результаты теории вероятности без понятия  - алгебры.
Определение вероятностного пространства.
Вероятностным пространством называется тройка (, , P), где
 - пространство элементарных событий, построенное для данного испытания;
 - -алгебра, заданная на  - системе возможных событий, которая интересует исследователя, в результате проводимых испытаний;
P -  - аддитивная мера, т.е.  - аддитивная неотрицательная функция, аргументами которой являются аргументы из  - алгебры и


icq 447777343
 
wzДата: Воскресенье, 13.09.2009, 09:49 | Сообщение # 2
~<•] Клан Лидер [•>~
Группа: Администраторы
Сообщений: 336
Награды: 0
Репутация: 666
Статус: Offline
Свойства многомерного нормального распределения

Все одномерные плотности вероятности - это плотности вероятности одномерной нормальной случайной величины с параметрами, определяемыми координатами вектора X и главной диагональю ковариационной матрицы B. Кроме того, подвектор вектора из k элементов, где также распределен нормально.
Если все коэффициенты корреляционной или ковариационной матрицы B (все ее недиагональные элементы) равны нулю, то показать самим, что компоненты случайной величины являются независимыми.

если ,то многомерная плотность распадается на произведение одномерных, значит независимы.
Теорема.

Проводим линейное преобразование Y=AX. A - квадратная невырожденная матрица, тогда вектор Y также имеет n-мерное нормальное распределение вида

Следствие: Из доказательства теоремы вытекает, что ковариационная матрица

Оператор A переводит произвольную область из арифметического пространства Rn в некоторую область того же пространства.
Рассмотрим произвольную область S, принадлежащую пространству элементарных событий случайной многомерной величины X. Ей соответствует область D в пространстве элементарных событий случайного вектора Y. При этом


Запишем эти вероятности

где |I| - якобиан перехода

Т.к. область S и соответственно D произвольны, то плотность вероятности случайного вектора x равна

n-мерная плотность вероятности случайного вектора Y равна

Преобразуем показатель степени e

Можно показать, что если нормальное распределение имеет данный вид, то B - ее ковариационная матрица

Следствие.
- многомерный нормальный вектор. A - прямоугольная матрица Тогда Y=AX имеет нормальное распределение вида

Y - m-мерный вектор.
Для определенности положим, что матрица A имеет вид
A = (A1 A2)
A1 - квадратная матрица размером
A2 - матрица размерности
Рассмотрим матрицу размерности . Считается, что m первых столбцов независимы.

равен определителю полученной квадратной матрицы и не равен нулю.
E - единственная квадратная матрица размерности
Следовательно, на основании доказанной теоремы, вектор Y имеет многомерное нормальное распределение.
Z=CX
Компоненты вектора Z имеют вид

Пусть матрица А произвольная, но т.к. ее ранг равен m она содержит m линейно независимых столбцов. Путем перестановки столбцом соберем эти столбцы в первые m. И соответствующим образом пронумеруем компоненты вектора Х. Попадаем в предыдущий случай.
Предельные случайные последовательности.

Рассмотрим вероятностное пространство в котором задана счетная последовательность случайных величин, каждая из которых является измеримой

Покажем, что событие измеримо, т.е. имеет вероятность наступления. Действительно событие

Каждое из этих событий в пересечении принадлежит - алгебре. По определению - алгебры ей принадлежит и счетное перечисление этих событий, таким образом событие имеет вероятность наступления.
Пусть последовательность имеет предел при , который может быть постоянной или случайной величиной. В теории вероятности этот предел понимают следующим образом: под сходимостью последовательности к пределу понимают событие А которое может задаваться следующим образом:
1.
Событие А состоит из всех m, удовлетворяющих условию: для любого как угодно большого r существует такое m, что для всех n выполняется

2. А: Если предел ,то

Для любого, как угодно большого r существует такое m, что для всех n выполняется


3.Если предел случайная величина, то

Показать самим, что событие А с - алгебре и следовательно имеет вероятность наступления
любое событие измеримо, как доказывалось ранее измеримы, и следовательно имеет вероятность наступления. Разность -алгебре. Следовательно событие А имеет вероятность наступления.
Если предел константа, то эквиваленты 1 и 2, если случайная величина - то 1 и 3.

Существующие определения сходимости случайных величин.

Пусть имеется счетная последовательность случайных величин и пусть предел последовательности.
1. Счетная последовательность сходится к пределу с вероятностью 1, если Р(А)=1.
Это не вероятность достоверного события.
2. Сходимость по поверхности.
Счетная последовательность случайных величин сходится к по поверхности, если

3. Сходимость в среднеквадратичном.
Последовательность случайных величин сходится к пределу в среднеквадратичном, если выполняется

Покажем, что из сходимости в среднеквадратичном следует сходимость по вероятности.
Воспользуемся Неравенством Чебышева

При любом конечном r если выполняется сходимость в среднеквадратичном, то этот предел существует и равен 0, т.к. числитель сходится к 0, а знаменатель конечен.
Теорема.
Счетная последовательность сходится к пределу с вероятностью 1 только тогда, когда

Указанное выше событие имеет своим дополнением событие

и сходимость с вероятностью 1 означает, что P(B)=0.
Очевидно, что условие теоремы достаточно рассмотреть для .
Положим
События Вrm, m=1,2,.... убывают, и для
Докажем это.
Будем искать P(Br) так

Событие, обратное имеет следующую структуру:

Показать самим, что следующее событие включает предыдущее.

По построению справедлива следующая формула

По третьей аксиоме теории вероятности

Построенный ряд D1, D2...Dn образует неубывающую ограниченную последовательность, следовательно имеет предел сверху.
Поэтому возможен переход

Теорема Бернулли.

Рассмотрим систему независимых испытаний Бернулли.

Система испытаний неограниченна. С каждым i-видом испытаний свяжем дискретную величину Xi

Хi принимают значения 1, если в i-том испытании произошло событие А и 0 - в противном случае

Рассмотрим случайную величину - число появлений события А в n испытаниях


icq 447777343
 
  • Страница 1 из 1
  • 1
Поиск:

Copyright MyCorp © 2025 Бесплатный хостинг uCoz